The Weather4Cast competition (hosted by NeurIPS 2022) required competitors to predict super-resolution rain movies in various regions of Europe when low-resolution satellite contexts covering wider regions are given. In this paper, we show that a general baseline 3D U-Net can be significantly improved with region-conditioned layers as well as orthogonality regularizations on 1x1x1 convolutional layers. Additionally, we facilitate the generalization with a bag of training strategies: mixup data augmentation, self-distillation, and feature-wise linear modulation (FiLM). Presented modifications outperform the baseline algorithms (3D U-Net) by up to 19.54% with less than 1% additional parameters, which won the 4th place in the core test leaderboard.


翻译:天气4Cast竞赛(由NeurIPS 2022主办)要求竞争者预测欧洲各地区的超分辨率雨景,如果提供覆盖大区域的低分辨率卫星环境的话。在本文中,我们表明,一般基线3D U-Net可以随着区域限制层以及1x1x1相联层的正方位调整而大大改进。此外,我们协助将培训战略包包包加以概括:数据增强、自我蒸馏和地貌精细线性调制(FILM)。 提出修改,使基线算法(3D U-Net)比19.54%高出最高19.54%,附加参数不到1%,在核心试验领头板中赢得了第4位。

0
下载
关闭预览

相关内容

ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员