In Mobile Manipulation, selecting an optimal mobile base pose is essential for successful object grasping. Previous works have addressed this problem either through classical planning methods or by learning state-based policies. They assume access to reliable state information, such as the precise object poses and environment models. In this work, we study base pose planning directly from top-down orthographic projections of the scene, which provide a global overview of the scene while preserving spatial structure. We propose VBM-NET, a learning-based method for base pose selection using such top-down orthographic projections. We use equivariant TransporterNet to exploit spatial symmetries and efficiently learn candidate base poses for grasping. Further, we use graph neural networks to represent a varying number of candidate base poses and use Reinforcement Learning to determine the optimal base pose among them. We show that VBM-NET can produce comparable solutions to the classical methods in significantly less computation time. Furthermore, we validate sim-to-real transfer by successfully deploying a policy trained in simulation to real-world mobile manipulation.
翻译:暂无翻译