This paper studies the estimation of the conditional density f (x, $\times$) of Y i given X i = x, from the observation of an i.i.d. sample (X i , Y i) $\in$ R d , i = 1,. .. , n. We assume that f depends only on r unknown components with typically r d. We provide an adaptive fully-nonparametric strategy based on kernel rules to estimate f. To select the bandwidth of our kernel rule, we propose a new fast iterative algorithm inspired by the Rodeo algorithm (Wasserman and Lafferty (2006)) to detect the sparsity structure of f. More precisely, in the minimax setting, our pointwise estimator, which is adaptive to both the regularity and the sparsity, achieves the quasi-optimal rate of convergence. Its computational complexity is only O(dn log n).


翻译:本文研究Y i 给X i = x 的有条件密度 f (x, $\ times $) 的估算,从对 i.d 样本( X i, Y i) 的观察( X i, Y i) $\ in $ R d, i = 1.., n 。 我们假设f 只取决于 r 未知的成分, 通常 r d., n 。 我们根据内核规则提供适应性的全非对称战略,以估计 f. 为了选择我们内核规则的带宽,我们提议了一个新的快速迭代算法,由Rodeo 算法( Wasserman 和 Lafferty (2006)) 启发,以探测 f. 更精确地说,在迷你Max 设置中,我们精准的估测算器,既适应常规性,又适应紧张性的, 也达到准最佳的趋同率。 我们的计算复杂度只有 O( dn log n) 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员