With the increasing importance of data privacy, Local Differential Privacy (LDP) has recently become a strong measure of privacy for protecting each user's privacy from data analysts without relying on a trusted third party. In this paper, we consider the problem of high-utility differentially private release. Given a domain of finite integers {1,2,...,N} and a distance-defined utility function, our goal is to design a differentially private mechanism that releases an item with the global expected error as small as possible. The most common LDP mechanism for this task is the Generalized Randomized Response (GRR) mechanism that treats all candidates equally except for the true item. In this paper, we introduce Bipartite Randomized Response mechanism (BRR), which adaptively divides all candidates into two parts by utility rankings given priori item. In the local search phase, we confirm how many high-utility candidates to be assigned with high release probability as the true item, which gives the locally optimal bipartite classification of all candidates. For preserving LDP, the global search phase uniformly selects the smallest number of dynamic high-utility candidates obtained locally. In particular, we give explicit formulas on the uniform number of dynamic high-utility candidates. The global expected error of our BRR is always no larger than the GRR, and can offer a decrease with a small and asymptotically exact factor. Extensive experiments demonstrate that BRR outperforms the state-of-the-art methods across the standard metrics and datasets.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2024年4月16日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2021年7月20日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
12+阅读 · 2024年4月16日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2021年7月20日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员