The rapid advancement of AI-assisted software engineering has brought transformative potential to the field of software engineering, but existing tools and paradigms remain limited by cognitive overload, inefficient tool integration, and the narrow capabilities of AI copilots. In response, we propose Compiler.next, a novel search-based compiler designed to enable the seamless evolution of AI-native software systems as part of the emerging Software Engineering 3.0 era. Unlike traditional static compilers, Compiler.next takes human-written intents and automatically generates working software by searching for an optimal solution. This process involves dynamic optimization of cognitive architectures and their constituents (e.g., prompts, foundation model configurations, and system parameters) while finding the optimal trade-off between several objectives, such as accuracy, cost, and latency. This paper outlines the architecture of Compiler.next and positions it as a cornerstone in democratizing software development by lowering the technical barrier for non-experts, enabling scalable, adaptable, and reliable AI-powered software. We present a roadmap to address the core challenges in intent compilation, including developing quality programming constructs, effective search heuristics, reproducibility, and interoperability between compilers. Our vision lays the groundwork for fully automated, search-driven software development, fostering faster innovation and more efficient AI-driven systems.
翻译:暂无翻译