Rare variants are hypothesized to be largely responsible for heritability and susceptibility to disease in humans. So rare variants association studies hold promise for understanding disease. Conversely though, the rareness of the variants poses practical challenges; since these variants are present in few individuals, it can be difficult to develop data-collection and statistical methods that effectively leverage their sparse information. In this work, we develop a novel Bayesian nonparametric model to capture how design choices in rare variants association studies can impact their usefulness. We then show how to use our model to guide design choices under a fixed experimental budget in practice. In particular, we provide a practical workflow and illustrative experiments on simulated data.


翻译:稀有的变异体被假定为对人类的遗传性和易感染疾病负主要责任。因此,稀有的变异体协会研究为了解疾病带来了希望。相反,变异体的稀有性带来了实际挑战;由于这些变异体存在于少数个人,因此很难制定数据收集和统计方法来有效地利用其稀有信息。在这项工作中,我们开发了一个新颖的巴伊西亚非对称模型,以了解稀有变异体协会研究的设计选择如何影响其效用。然后我们展示如何利用我们的模型来指导在固定实验预算下的实际设计选择。特别是,我们提供了模拟数据的实际工作流程和说明性实验。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
16+阅读 · 2021年5月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Arxiv
24+阅读 · 2021年3月4日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2021年5月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Top
微信扫码咨询专知VIP会员