The origins of fiducial inference trace back to the 1930s when R. A. Fisher first introduced the concept as a response to what he perceived as a limitation of Bayesian inference - the requirement for a subjective prior distribution on model parameters in cases where no prior information was available. However, Fisher's initial fiducial approach fell out of favor as complications arose, particularly in multi-parameter problems. In the wake of 2000, amidst a renewed interest in contemporary adaptations of fiducial inference, generalized fiducial inference (GFI) emerged to extend Fisher's fiducial argument, providing a promising avenue for addressing numerous crucial and practical inference challenges. Nevertheless, the adoption of GFI has been limited due to its often demanding mathematical derivations and the necessity for implementing complex Markov Chain Monte Carlo algorithms. This complexity has impeded its widespread utilization and practical applicability. This paper presents a significant advancement by introducing an innovative variant of GFI designed to alleviate these challenges. Specifically, this paper proposes AutoGFI, an easily implementable algorithm that streamlines the application of GFI to a broad spectrum of inference problems involving additive noise. AutoGFI can be readily implemented as long as a fitting routine is available, making it accessible to a broader audience of researchers and practitioners. To demonstrate its effectiveness, AutoGFI is applied to three contemporary and challenging problems: tensor regression, matrix completion, and regression with network cohesion. These case studies highlight the immense potential of GFI and illustrate AutoGFI's promising performance when compared to specialized solutions for these problems. Overall, this research paves the way for a more accessible and powerful application of GFI in a range of practical domains.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员