Semantic correspondence remains a challenging task for establishing correspondences between a pair of images with the same category or similar scenes due to the large intra-class appearance. In this paper, we introduce a novel problem called 'Small Object Semantic Correspondence (SOSC).' This problem is challenging due to the close proximity of keypoints associated with small objects, which results in the fusion of these respective features. It is difficult to identify the corresponding key points of the fused features, and it is also difficult to be recognized. To address this challenge, we propose the Keypoint Bounding box-centered Cropping (KBC) method, which aims to increase the spatial separation between keypoints of small objects, thereby facilitating independent learning of these keypoints. The KBC method is seamlessly integrated into our proposed inference pipeline and can be easily incorporated into other methodologies, resulting in significant performance enhancements. Additionally, we introduce a novel framework, named KBCNet, which serves as our baseline model. KBCNet comprises a Cross-Scale Feature Alignment (CSFA) module and an efficient 4D convolutional decoder. The CSFA module is designed to align multi-scale features, enriching keypoint representations by integrating fine-grained features and deep semantic features. Meanwhile, the 4D convolutional decoder, based on efficient 4D convolution, ensures efficiency and rapid convergence. To empirically validate the effectiveness of our proposed methodology, extensive experiments are conducted on three widely used benchmarks: PF-PASCAL, PF-WILLOW, and SPair-71k. Our KBC method demonstrates a substantial performance improvement of 7.5\% on the SPair-71K dataset, providing compelling evidence of its efficacy.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年5月28日
Arxiv
0+阅读 · 2024年5月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员