Uncovering the underlying causal mechanisms of complex real-world systems remains a significant challenge, as these systems often entail high data collection costs and involve unknown interventions. We introduce MetaCaDI, the first framework to cast the joint discovery of a causal graph and unknown interventions as a meta-learning problem. MetaCaDI is a Bayesian framework that learns a shared causal graph structure across multiple experiments and is optimized to rapidly adapt to new, few-shot intervention target prediction tasks. A key innovation is our model's analytical adaptation, which uses a closed-form solution to bypass expensive and potentially unstable gradient-based bilevel optimization. Extensive experiments on synthetic and complex gene expression data demonstrate that MetaCaDI significantly outperforms state-of-the-art methods. It excels at both causal graph recovery and identifying intervention targets from as few as 10 data instances, proving its robustness in data-scarce scenarios.
翻译:暂无翻译