Pretraining CNN models (i.e., UNet) through self-supervision has become a powerful approach to facilitate medical image segmentation under low annotation regimes. Recent contrastive learning methods encourage similar global representations when the same image undergoes different transformations, or enforce invariance across different image/patch features that are intrinsically correlated. However, CNN-extracted global and local features are limited in capturing long-range spatial dependencies that are essential in biological anatomy. To this end, we present a keypoint-augmented fusion layer that extracts representations preserving both short- and long-range self-attention. In particular, we augment the CNN feature map at multiple scales by incorporating an additional input that learns long-range spatial self-attention among localized keypoint features. Further, we introduce both global and local self-supervised pretraining for the framework. At the global scale, we obtain global representations from both the bottleneck of the UNet, and by aggregating multiscale keypoint features. These global features are subsequently regularized through image-level contrastive objectives. At the local scale, we define a distance-based criterion to first establish correspondences among keypoints and encourage similarity between their features. Through extensive experiments on both MRI and CT segmentation tasks, we demonstrate the architectural advantages of our proposed method in comparison to both CNN and Transformer-based UNets, when all architectures are trained with randomly initialized weights. With our proposed pretraining strategy, our method further outperforms existing SSL methods by producing more robust self-attention and achieving state-of-the-art segmentation results. The code is available at https://github.com/zshyang/kaf.git.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员