Structured sparsity regularization offers a principled way to compact neural networks, but its non-differentiability breaks compatibility with conventional stochastic gradient descent and requires either specialized optimizers or additional post-hoc pruning without formal guarantees. In this work, we propose $D$-Gating, a fully differentiable structured overparameterization that splits each group of weights into a primary weight vector and multiple scalar gating factors. We prove that any local minimum under $D$-Gating is also a local minimum using non-smooth structured $L_{2,2/D}$ penalization, and further show that the $D$-Gating objective converges at least exponentially fast to the $L_{2,2/D}$-regularized loss in the gradient flow limit. Together, our results show that $D$-Gating is theoretically equivalent to solving the original group sparsity problem, yet induces distinct learning dynamics that evolve from a non-sparse regime into sparse optimization. We validate our theory across vision, language, and tabular tasks, where $D$-Gating consistently delivers strong performance-sparsity tradeoffs and outperforms both direct optimization of structured penalties and conventional pruning baselines.
翻译:暂无翻译