This work derives the authentication security of pseudorandom function (PRF) GNSS ranging under multiple GNSS spoofing models, including the Security Code Estimation and Replay (SCER) spoofer. When GNSS ranging codes derive from a PRF utilizing a secret known only to the broadcaster, the spoofer cannot predict the ranging code before broadcast. Therefore, PRF ranging can be used to establish trust in the GNSS pseudoranges and the resulting receiver position, navigation, and timing (PNT) solution. I apply the methods herein to Galileo's Signal Authentication Service (SAS) utilizing the encrypted Galileo E6-C signal to compute that, at most, 400 ms of Galileo E6-C data to assert 128-bit authentication security under non-SCER models. For the SCER adversary, I predict the adversary's needed receiving radio equipment to break authentication security. One can use this work to design a PRF GNSS ranging protocol to meet useful authentication security requirements by computing the probability of missed detection.
翻译:暂无翻译