Vectorial dual-bent functions have recently attracted some researchers' interest as they play a significant role in constructing partial difference sets, association schemes, bent partitions and linear codes. In this paper, we further study vectorial dual-bent functions $F: V_{n}^{(p)}\rightarrow V_{m}^{(p)}$, where $2\leq m \leq \frac{n}{2}$, $V_{n}^{(p)}$ denotes an $n$-dimensional vector space over the prime field $\mathbb{F}_{p}$. We give new characterizations of certain vectorial dual-bent functions (called vectorial dual-bent functions with Condition A) in terms of amorphic association schemes, linear codes and generalized Hadamard matrices, respectively. When $p=2$, we characterize vectorial dual-bent functions with Condition A in terms of bent partitions. Furthermore, we characterize certain bent partitions in terms of amorphic association schemes, linear codes and generalized Hadamard matrices, respectively. For general vectorial dual-bent functions $F: V_{n}^{(p)}\rightarrow V_{m}^{(p)}$ with $F(0)=0, F(x)=F(-x)$ and $2\leq m \leq \frac{n}{2}$, we give a necessary and sufficient condition on constructing association schemes. Based on such a result, more association schemes are constructed from vectorial dual-bent functions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员