In this paper we present a Fourier feature based deep domain decomposition method (F-D3M) for partial differential equations (PDEs). Currently, deep neural network based methods are actively developed for solving PDEs, but their efficiency can degenerate for problems with high frequency modes. In this new F-D3M strategy, overlapping domain decomposition is conducted for the spatial domain, such that high frequency modes can be reduced to relatively low frequency ones. In each local subdomain, multi Fourier feature networks (MFFNets) are constructed, where efficient boundary and interface treatments are applied for the corresponding loss functions. We present a general mathematical framework of F-D3M, validate its accuracy and demonstrate its efficiency with numerical experiments.


翻译:在本文中,我们提出了一个基于Fourier地貌特征的局部差分方程深域分解法(F-D3M),目前,正在积极开发基于深神经网络的方法,以解决PDEs,但是由于高频模式的问题,其效率可能会下降。在这一新F-D3M战略中,空间域系的域别分解重叠,从而可以将高频模式降低到相对低频模式。在每个地方分域中,都建立了多个多Fourier地貌网络(MF FRFFFFFMetets),对相应的损失功能采用了高效的边界和界面处理。我们提出了一个F-D3M的一般数学框架,验证其准确性,并以数字实验来证明其效率。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月19日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员