We propose a \textit{guided multi-fidelity Bayesian optimization} framework for data-efficient controller tuning that integrates corrected digital twin simulations with real-world measurements. The method targets closed-loop systems with limited-fidelity simulations or inexpensive approximations. To address model mismatch, we build a multi-fidelity surrogate with a learned correction model that refines digital twin estimates using real data. An adaptive cost-aware acquisition function balances expected improvement, fidelity, and sampling cost. Our method ensures adaptability as new measurements arrive. The digital twin accuracy is re-estimated, dynamically adapting both cross-source correlations and the acquisition function. This ensures that accurate simulations are used more frequently, while inaccurate simulation data are appropriately downweighted. Experiments on robotic drive hardware and supporting numerical studies demonstrate that our method enhances tuning efficiency compared to standard Bayesian optimization and multi-fidelity methods.
翻译:暂无翻译