The landscape of cyber threats grows more complex by the day. Advanced Persistent Threats carry out systematic attack campaigns against which cybersecurity practitioners must defend. Examples of such organized attacks are operations Dream Job, Wocao, WannaCry or the SolarWinds Compromise. To evaluate which risks are most threatening, and which campaigns to prioritize against when defending, cybersecurity experts must be equipped with the right toolbox. In particular, they must be able to (a) obtain likelihood values for each attack campaign recorded in the wild and (b) reliably and transparently operationalize these values to carry out quantitative comparisons among campaigns. This will allow security experts to perform quantitatively-informed decision making that is transparent and accountable. In this paper we construct such a framework by: (1) quantifying the likelihood of attack campaigns via data-driven procedures on the MITRE knowledge base and (2) introducing a methodology for automatic modelling of MITRE intelligence data: this is complete in the sense that it captures any attack campaign via template attack tree models. (3) We further propose a computational framework to carry out this comparisons based on the cATM formal logic, and implement this into an open-source Python tool. Finally, we validate our approach by quantifying the likelihood of all MITRE campaigns, and comparing the likelihood of the Wocao and Dream Job MITRE campaigns -- generated with our proposed approach -- against "ad hoc" traditionally-built attack tree models, demonstrating how our methodology is substantially lighter in modelling effort, and still capable of capturing all the quantitative relevant data.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员