The HyperText Markup Language 5 (HTML5) <canvas> is useful for creating visual-centric web applications. However, unlike traditional web applications, HTML5 <canvas> applications render objects onto the <canvas> bitmap without representing them in the Document Object Model (DOM). Mismatches between the expected and actual visual output of the <canvas> bitmap are termed visual bugs. Due to the visual-centric nature of <canvas> applications, visual bugs are important to detect because such bugs can render a <canvas> application useless. As we showed in prior work, Asset-Based graphics can provide the ground truth for a visual test oracle. However, many <canvas> applications procedurally generate their graphics. In this paper, we investigate how to detect visual bugs in <canvas> applications that use Procedural graphics as well. In particular, we explore the potential of Vision-Language Models (VLMs) to automatically detect visual bugs. Instead of defining an exact visual test oracle, information about the application's expected functionality (the context) can be provided with the screenshot as input to the VLM. To evaluate this approach, we constructed a dataset containing 80 bug-injected screenshots across four visual bug types (Layout, Rendering, Appearance, and State) plus 20 bug-free screenshots from 20 <canvas> applications. We ran experiments with a state-of-the-art VLM using several combinations of text and image context to describe each application's expected functionality. Our results show that by providing the application README(s), a description of visual bug types, and a bug-free screenshot as context, VLMs can be leveraged to detect visual bugs with up to 100% per-application accuracy.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Canvas 是 HTML5 标准中新晋的标签元素,它还提供了基于 JavaScript 的 2D 和 bitmap 图形的 API。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员