Weight quantization in spiking neural networks (SNNs) could further reduce energy consumption. However, quantizing weights without sacrificing accuracy remains challenging. In this study, inspired by astrocyte-mediated synaptic modulation in the biological nervous systems, we propose Temporal-adaptive Weight Quantization (TaWQ), which incorporates weight quantization with temporal dynamics to adaptively allocate ultra-low-bit weights along the temporal dimension. Extensive experiments on static (e.g., ImageNet) and neuromorphic (e.g., CIFAR10-DVS) datasets demonstrate that our TaWQ maintains high energy efficiency (4.12M, 0.63mJ) while incurring a negligible quantization loss of only 0.22% on ImageNet.


翻译:脉冲神经网络(SNNs)中的权重量化可进一步降低能耗。然而,在不牺牲精度的情况下量化权重仍具挑战性。本研究受生物神经系统中星形胶质细胞介导的突触调节机制启发,提出了时序自适应权重量化(TaWQ),该方法将权重量化与时序动态特性相结合,沿时间维度自适应分配超低比特权重。在静态数据集(如ImageNet)和神经形态数据集(如CIFAR10-DVS)上的大量实验表明,我们的TaWQ方法在保持高能效(4.12M,0.63mJ)的同时,在ImageNet上仅产生0.22%的可忽略量化损失。

0
下载
关闭预览

相关内容

【KDD2024】面向课程图稀疏化的轻量级图神经网络搜索
专知会员服务
18+阅读 · 2024年6月25日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
专知会员服务
29+阅读 · 2021年6月7日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员