Non-nutritive sucking (NNS), which refers to the act of sucking on a pacifier, finger, or similar object without nutrient intake, plays a crucial role in assessing healthy early development. In the case of preterm infants, NNS behavior is a key component in determining their readiness for feeding. In older infants, the characteristics of NNS behavior offer valuable insights into neural and motor development. Additionally, NNS activity has been proposed as a potential safeguard against sudden infant death syndrome (SIDS). However, the clinical application of NNS assessment is currently hindered by labor-intensive and subjective finger-in-mouth evaluations. Consequently, researchers often resort to expensive pressure transducers for objective NNS signal measurement. To enhance the accessibility and reliability of NNS signal monitoring for both clinicians and researchers, we introduce a vision-based algorithm designed for non-contact detection of NNS activity using baby monitor footage in natural settings. Our approach involves a comprehensive exploration of optical flow and temporal convolutional networks, enabling the detection and amplification of subtle infant-sucking signals. We successfully classify short video clips of uniform length into NNS and non-NNS periods. Furthermore, we investigate manual and learning-based techniques to piece together local classification results, facilitating the segmentation of longer mixed-activity videos into NNS and non-NNS segments of varying duration. Our research introduces two novel datasets of annotated infant videos, including one sourced from our clinical study featuring 19 infant subjects and 183 hours of overnight baby monitor footage.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员