The recent rise of Self-Supervised Learning (SSL) as one of the preferred strategies for learning with limited labeled data, and abundant unlabeled data has led to the widespread use of these models. They are usually pretrained, finetuned, and evaluated on the same data distribution, i.e., within an in-distribution setting. However, they tend to perform poorly in out-of-distribution evaluation scenarios, a challenge that Unsupervised Domain Generalization (UDG) seeks to address. This paper introduces a novel method to standardize the styles of images in a batch. Batch styles standardization, relying on Fourier-based augmentations, promotes domain invariance in SSL by preventing spurious correlations from leaking into the features. The combination of batch styles standardization with the well-known contrastive-based method SimCLR leads to a novel UDG method named CLaSSy ($\textbf{C}$ontrastive $\textbf{L}$e$\textbf{a}$rning with $\textbf{S}$tandardized $\textbf{S}$t$\textbf{y}$les). CLaSSy offers serious advantages over prior methods, as it does not rely on domain labels and is scalable to handle a large number of domains. Experimental results on various UDG datasets demonstrate the superior performance of CLaSSy compared to existing UDG methods. Finally, the versatility of the proposed batch styles standardization is demonstrated by extending respectively the contrastive-based and non-contrastive-based SSL methods, SWaV and MSN, while considering different backbone architectures (convolutional-based, transformers-based).


翻译:暂无翻译

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员