The number and diversity of consumer devices are growing rapidly, alongside their target applications' memory consumption. Unfortunately, DRAM scalability is becoming a limiting factor to the available memory capacity in consumer devices. As a potential solution, manufacturers have introduced emerging non-volatile memories (NVMs) into the market, which can be used to increase the memory capacity of consumer devices by augmenting or replacing DRAM. Since entirely replacing DRAM with NVM in consumer devices imposes large system integration and design challenges, recent works propose extending the total main memory space available to applications by using NVM as swap space for DRAM. However, no prior work analyzes the implications of enabling a real NVM-based swap space in real consumer devices. In this work, we provide the first analysis of the impact of extending the main memory space of consumer devices using off-the-shelf NVMs. We extensively examine system performance and energy consumption when the NVM device is used as swap space for DRAM main memory to effectively extend the main memory capacity. For our analyses, we equip real web-based Chromebook computers with the Intel Optane SSD, which is a state-of-the-art low-latency NVM-based SSD device. We compare the performance and energy consumption of interactive workloads running on our Chromebook with NVM-based swap space, where the Intel Optane SSD capacity is used as swap space to extend main memory capacity, against two state-of-the-art systems: (i) a baseline system with double the amount of DRAM than the system with the NVM-based swap space; and (ii) a system where the Intel Optane SSD is naively replaced with a state-of-the-art (yet slower) off-the-shelf NAND-flash-based SSD, which we use as a swap space of equivalent size as the NVM-based swap space.


翻译:消费者设备的数量和多样性正在随着其目标应用的内存消耗量而迅速增长。 不幸的是, DRAM的缩放性正在成为一个限制消费者设备可用内存能力的因素。 作为一个潜在的解决方案,制造商已经向市场引入了新兴的非挥发性记忆(NVM),可以通过扩大或替换DRAM来提高消费者设备的记忆能力。由于消费者设备完全用NVM来取代DRAM,从而带来巨大的系统整合和设计挑战,最近的工作提议通过使用NVM作为DRA的互换空间空间空间空间空间应用空间应用空间应用空间。然而,此前没有开展任何工作来分析在实际消费者设备中建立真正的 NVM 的内存能力。 在这项工作中,我们首先分析扩大消费者设备的主要内存空间存储能力。 我们用基于DRAM的主要记忆交换空间应用了以有效扩展主要记忆能力。 我们用基于网络的 Chromebook计算机与Intel Optan SSDSD(OD-SD) 的双对内流数据系统进行双自动互换,这是使用SVDM的S-de-de-deal-de-de-de-dealde-de-devalde-de Slieval-de-de-de-de-de-de-de-dealde-de-de-de-de-deal a lapal lapal lapal a lapal a lapal a ex a lapal lapal laft-de-de-de-de-de-de-stal-stal-stal laft-de-stal ex-stal-de-de-de-de-stal-st-st-stal-st-st-st-st-stal-st-st-st-st-st-st-st-st-stal-st-st-st-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal-stal </s>

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员