This paper presents a novel approach that integrates 5G Time of Arrival (ToA) measurements into ORB-SLAM3 to enable global localization and enhance mapping capabilities for indoor drone navigation. We extend ORB-SLAM3's optimization pipeline to jointly process ToA data from 5G base stations alongside visual and inertial measurements while estimating system biases. This integration transforms the inherently local SLAM estimates into globally referenced trajectories and effectively resolves scale ambiguity in monocular configurations. Our method is evaluated using both Aerolab indoor datasets with RGB-D cameras and the EuRoC MAV benchmark, complemented by simulated 5G ToA measurements at 28 GHz and 78 GHz frequencies using MATLAB and QuaDRiGa. Extensive experiments across multiple SLAM configurations demonstrate that ToA integration enables consistent global positioning across all modes while maintaining local accuracy. For monocular configurations, ToA integration successfully resolves scale ambiguity and improves consistency. We further investigate scenarios with unknown base station positions and demonstrate that ToA measurements can effectively serve as an alternative to loop closure for drift correction. We also analyze how different geometric arrangements of base stations impact SLAM performance. Comparative analysis with state-of-the-art methods, including UWB-VO, confirms our approach's robustness even with lower measurement frequencies and sequential base station operation. The results validate that 5G ToA integration provides substantial benefits for global SLAM applications, particularly in challenging indoor environments where accurate positioning is critical.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员