Physical adversarial examples (PAEs) are regarded as whistle-blowers of real-world risks in deep-learning applications, thus worth further investigation. However, current PAE generation studies show limited adaptive attacking ability to diverse and varying scenes, revealing the urgent requirement of dynamic PAEs that are generated in real time and conditioned on the observation from the attacker. The key challenge in generating dynamic PAEs is learning the sparse relation between PAEs and the observation of attackers under the noisy feedback of attack training. To address the challenge, we present DynamicPAE, the first generative framework that enables scene-aware real-time physical attacks. Specifically, to address the noisy feedback problem that obfuscates the exploration of scene-related PAEs, we introduce the residual-guided adversarial pattern exploration technique. Residual-guided training, which relaxes the attack training with a reconstruction task, is proposed to enrich the feedback information, thereby achieving a more comprehensive exploration of PAEs. To address the alignment problem between the trained generator and the real-world scenario, we introduce the distribution-matched attack scenario alignment, consisting of the conditional-uncertainty-aligned data module and the skewness-aligned objective re-weighting module. The former aligns the training environment with the incomplete observation of the real-world attacker. The latter facilitates consistent stealth control across different attack targets with the skewness controller. Extensive digital and physical evaluations demonstrate the superior attack performance of DynamicPAE, attaining a 2.07 $\times$ boost (58.8% average AP drop under attack) on representative object detectors (e.g., DETR) over state-of-the-art static PAE generating methods. Overall, our work opens the door to end-to-end modeling of dynamic PAEs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2024年3月11日
Arxiv
13+阅读 · 2022年4月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员