We provide a new and simplified proof of Winter's measurement compression [2004] via likelihood POVMs. Secondly, we provide an alternate proof of the central tool at the heart of this theorem - the Quantum covering lemma. Our proof does not rely on the Ahlswede Winter's operator Chernoff bound [2002] and is applicable even when the random operators are only pairwise independent. We leverage these results to design structured POVMs and prove their optimality in regards to communication rates.


翻译:我们通过POVMs提供了一个新的、简化的冬季测量压缩(2004年)的新证据。 其次,我们提供了另一个关于这个理论核心的中心工具的替代证据,即覆盖 Lemma 的量子体。我们的证据并不依赖Ahlswede Winter的操作员Chernoff 受约束[2002年],即使随机操作员是双向独立的,也适用。我们利用这些结果来设计结构化的 POVMs,并证明它们在通信率方面是最佳的。

0
下载
关闭预览

相关内容

LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Top
微信扫码咨询专知VIP会员