Label Distribution Learning (LDL) assigns soft labels, a.k.a. degrees, to a sample. In reality, it is always laborious to obtain complete degrees, giving birth to the Incomplete LDL (InLDL). However, InLDL often suffers from performance degeneration. To remedy it, existing methods need one or more explicit regularizations, leading to burdensome parameter tuning and extra computation. We argue that label distribution itself may provide useful prior, when used appropriately, the InLDL problem can be solved without any explicit regularization. In this paper, we offer a rational alternative to use such a prior. Our intuition is that large degrees are likely to get more concern, the small ones are easily overlooked, whereas the missing degrees are completely neglected in InLDL. To learn an accurate label distribution, it is crucial not to ignore the small observed degrees but to give them properly large weights, while gradually increasing the weights of the missing degrees. To this end, we first define a weighted empirical risk and derive upper bounds between the expected risk and the weighted empirical risk, which reveals in principle that weighting plays an implicit regularization role. Then, by using the prior of degrees, we design a weighted scheme and verify its effectiveness. To sum up, our model has four advantages, it is 1) model selection free, as no explicit regularization is imposed; 2) with closed form solution (sub-problem) and easy-to-implement (a few lines of codes); 3) with linear computational complexity in the number of samples, thus scalable to large datasets; 4) competitive with state-of-the-arts even without any explicit regularization.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员