Due to massive adoption of social media, detection of users' depression through social media analytics bears significant importance, particularly for underrepresented languages, such as Bangla. This study introduces a well-grounded approach to identify depressive social media posts in Bangla, by employing advanced natural language processing techniques. The dataset used in this work, annotated by domain experts, includes both depressive and non-depressive posts, ensuring high-quality data for model training and evaluation. To address the prevalent issue of class imbalance, we utilised random oversampling for the minority class, thereby enhancing the model's ability to accurately detect depressive posts. We explored various numerical representation techniques, including Term Frequency-Inverse Document Frequency (TF-IDF), Bidirectional Encoder Representations from Transformers (BERT) embedding and FastText embedding, by integrating them with a deep learning-based Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) model. The results obtained through extensive experimentation, indicate that the BERT approach performed better the others, achieving a F1-score of 84%. This indicates that BERT, in combination with the CNN-BiLSTM architecture, effectively recognises the nuances of Bangla texts relevant to depressive contents. Comparative analysis with the existing state-of-the-art methods demonstrates that our approach with BERT embedding performs better than others in terms of evaluation metrics and the reliability of dataset annotations. Our research significantly contribution to the development of reliable tools for detecting depressive posts in the Bangla language. By highlighting the efficacy of different embedding techniques and deep learning models, this study paves the way for improved mental health monitoring through social media platforms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

BERT全称Bidirectional Encoder Representations from Transformers,是预训练语言表示的方法,可以在大型文本语料库(如维基百科)上训练通用的“语言理解”模型,然后将该模型用于下游NLP任务,比如机器翻译、问答。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员