Short-form video (SFV) has become a globally popular form of entertainment in recent years, appearing on major social media platforms. However, current research indicate that short video addiction can lead to numerous negative effects on both physical and psychological health, such as decreased attention span and reduced motivation to learn. Additionally, Short-form Video Addiction (SFVA) has been linked to other issues such as a lack of psychological support in real life, family or academic pressure, and social anxiety. Currently, the detection of SFVA typically occurs only after users experience negative consequences. Therefore, we aim to construct a short video addiction dataset based on social network behavior and design an early detection framework for SFVA. Previous mental health detection research on online social media has mostly focused on detecting depression and suicidal tendency. In this study, we propose the first early detection framework for SFVA EarlySD. We first introduce large language models (LLMs) to address the common issues of sparsity and missing data in graph datasets. Meanwhile, we categorize social network behavior data into different modalities and design a heterogeneous social network structure as the primary basis for detecting SFVA. We conduct a series of quantitative analysis on short video addicts using our self-constructed dataset, and perform extensive experiments to validate the effectiveness of our method EarlySD, using social data and heterogeneous social graphs in the detection of short video addiction.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
17+阅读 · 2018年12月10日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员