Spatial reasoning is a fundamental capability of multimodal large language models (MLLMs), yet their performance in open aerial environments remains underexplored. In this work, we present Open3D-VQA, a novel benchmark for evaluating MLLMs' ability to reason about complex spatial relationships from an aerial perspective. The benchmark comprises 73k QA pairs spanning 7 general spatial reasoning tasks, including multiple-choice, true/false, and short-answer formats, and supports both visual and point cloud modalities. The questions are automatically generated from spatial relations extracted from both real-world and simulated aerial scenes. Evaluation on 13 popular MLLMs reveals that: 1) Models are generally better at answering questions about relative spatial relations than absolute distances, 2) 3D LLMs fail to demonstrate significant advantages over 2D LLMs, and 3) Fine-tuning solely on the simulated dataset can significantly improve the model's spatial reasoning performance in real-world scenarios. We release our benchmark, data generation pipeline, and evaluation toolkit to support further research: https://github.com/EmbodiedCity/Open3D-VQA.code.
翻译:暂无翻译