Secure Multiparty Computation (MPC) protocols enable secure evaluation of a circuit by several parties, even in the presence of an adversary who maliciously corrupts all but one of the parties. These MPC protocols are constructed using the well-known secret-sharing-based paradigm (SPDZ and SPDZ2k), where the protocols ensure security against a malicious adversary by computing Message Authentication Code (MAC) tags on the input shares and then evaluating the circuit with these input shares and tags. However, this tag computation adds a significant runtime overhead, particularly for machine learning (ML) applications with numerous linear computation layers such as convolutions and fully connected layers. To alleviate the tag computation overhead, we introduce CompactTag, a lightweight algorithm for generating MAC tags specifically tailored for linear layers in ML. Linear layer operations in ML, including convolutions, can be transformed into Toeplitz matrix multiplications. For the multiplication of two matrices with dimensions T1 x T2 and T2 x T3 respectively, SPDZ2k required O(T1 x T2 x T3) local multiplications for the tag computation. In contrast, CompactTag only requires O(T1 x T2 + T1 x T3 + T2 x T3) local multiplications, resulting in a substantial performance boost for various ML models. We empirically compared our protocol to the SPDZ2k protocol for various ML circuits, including ResNet Training-Inference, Transformer Training-Inference, and VGG16 Training-Inference. SPDZ2k dedicated around 30% of its online runtime for tag computation. CompactTag speeds up this tag computation bottleneck by up to 23x, resulting in up to 1.47x total online phase runtime speedups for various ML workloads.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员