Load instructions often limit instruction-level parallelism (ILP) in modern processors due to data and resource dependences they cause. Prior techniques like Load Value Prediction (LVP) and Memory Renaming (MRN) mitigate load data dependence by predicting the data value of a load instruction. However, they fail to mitigate load resource dependence as the predicted load instruction gets executed nonetheless. Our goal in this work is to improve ILP by mitigating both load data dependence and resource dependence. To this end, we propose a purely-microarchitectural technique called Constable, that safely eliminates the execution of load instructions. Constable dynamically identifies load instructions that have repeatedly fetched the same data from the same load address. We call such loads likely-stable. For every likely-stable load, Constable (1) tracks modifications to its source architectural registers and memory location via lightweight hardware structures, and (2) eliminates the execution of subsequent instances of the load instruction until there is a write to its source register or a store or snoop request to its load address. Our extensive evaluation using a wide variety of 90 workloads shows that Constable improves performance by 5.1% while reducing the core dynamic power consumption by 3.4% on average over a strong baseline system that implements MRN and other dynamic instruction optimizations (e.g., move and zero elimination, constant and branch folding). In presence of 2-way simultaneous multithreading (SMT), Constable's performance improvement increases to 8.8% over the baseline system. When combined with a state-of-the-art load value predictor (EVES), Constable provides an additional 3.7% and 7.8% average performance benefit over the load value predictor alone, in the baseline system without and with 2-way SMT, respectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员