We introduce a new Projected Rayleigh Quotient Iteration aimed at improving the convergence behaviour of classic Rayleigh Quotient iteration (RQI) by incorporating approximate information about the target eigenvector at each step. While classic RQI exhibits local cubic convergence for Hermitian matrices, its global behaviour can be unpredictable, whereby it may converge to an eigenvalue far away from the target, even when started with accurate initial conditions. This problem is exacerbated when the eigenvalues are closely spaced. The key idea of the new algorithm is at each step to add a complex-valued projection to the original matrix (that depends on the current eigenvector approximation), such that the unwanted eigenvalues are lifted into the complex plane while the target stays close to the real line, thereby increasing the spacing between the target eigenvalue and the rest of the spectrum. Making better use of the eigenvector approximation leads to more robust convergence behaviour and the new method converges reliably to the correct target eigenpair for a significantly wider range of initial vectors than does classic RQI. We prove that the method converges locally cubically and we present several numerical examples demonstrating the improved global convergence behaviour. In particular, we apply it to compute eigenvalues in a band-gap spectrum of a Sturm-Liouville operator used to model photonic crystal fibres, where the target and unwanted eigenvalues are closely spaced. The examples show that the new method converges to the desired eigenpair even when the eigenvalue spacing is very small, often succeeding when classic RQI fails.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年1月24日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员