A noisy generalized phase retrieval (NGPR) problem refers to a problem of estimating $x_0 \in \mathbb{C}^d$ by noisy quadratic samples $\big\{x_0^*A_kx_0+\eta_k\big\}_{k=1}^n$ where $A_k$ is a Hermitian matrix and $\eta_k$ is a noise scalar. When $A_k=\alpha_k\alpha_k^*$ for some $\alpha_k\in\mathbb{C}^d$, it reduces to a standard noisy phase retrieval (NPR) problem. The main aim of this paper is to study the estimation performance of empirical $\ell_2$ risk minimization in both problems when $A_k$ in NGPR, or $\alpha_k$ in NPR, is drawn from sub-Gaussian distribution. Under different kinds of noise patterns, we establish error bounds that can imply approximate reconstruction and these results are new in the literature. In NGPR, we show the bounds are of $O\big(\frac{||\eta||}{\sqrt{n}}\big)$ and $O\big(||\eta||_\infty \sqrt{\frac{d}{n}}\big)$ for general noise, and of $O\big(\sqrt{\frac{d\log n}{n}}\big)$ and $O\big(\sqrt{\frac{d(\log n)^2}{n}}\big)$ for random noise with sub-Gaussian and sub-exponential tail respectively, where $\| \eta \|$ and $\| \eta \|_{\infty}$ are the 2-norm and sup-norm of the noise vector of $\eta_k$. Under heavy-tailed noise, by truncating response outliers we propose a robust estimator that possesses an error bound with slower convergence rate. On the other hand, we obtain in NPR the bound is of $O\big(\sqrt{\frac{d\log n}{n}}\big)$ and $O\big(\sqrt{\frac{d(\log n)^2}{n}}\big)$) for sub-Gaussian and sub-exponential noise respectively, which is essentially tighter than the existing bound $O\big(\frac{||\eta||_2}{\sqrt{n}}\big)$. Although NGPR involving measurement matrix $A_k$ is more computationally demanding than NPR involving measurement vector $\alpha_k$, our results reveal that NGPR exhibits stronger robustness than NPR under biased and deterministic noise. Experimental results are presented to confirm and demonstrate our theoretical findings.


翻译:响亮的通用回收( NGPR) 问题是指一个问题, 以吵闹的二次样本来估算 $x_ 0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员