This paper introduces a unified family of smoothed quantile estimators that continuously interpolate between classical empirical quantiles and the sample mean. The estimators q(z, h) are defined as minimizers of a regularized objective function depending on two parameters: a smoothing parameter h $\ge$ 0 and a location parameter z $\in$ R. When h = 0 and z $\in$ (-1, 1), the estimator reduces to the empirical quantile of order $\tau$ = (1z)/2; as h $\rightarrow$ $\infty$, it converges to the sample mean for any fixed z. We establish consistency, asymptotic normality, and an explicit variance expression characterizing the efficiency-robustness trade-off induced by h. A key geometric insight shows that for each fixed quantile level $\tau$ , the admissible parameter pairs (z, h) lie on a straight line in the parameter space, along which the population quantile remains constant while asymptotic efficiency varies. The analysis reveals two regimes: under light-tailed distributions (e.g., Gaussian), smoothing yields a monotonic but asymptotic variance reduction with no finite optimum; under heavy-tailed distributions (e.g., Laplace), a finite smoothing level h * ($\tau$ ) > 0 achieves strict efficiency improvement over the classical empirical quantile. Numerical illustrations confirm these theoretical predictions and highlight how smoothing balances robustness and efficiency across quantile levels.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
Arxiv
11+阅读 · 2017年11月22日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员