We introduce second-order low-dissipation (LD) path-conservative central-upwind (PCCU) schemes for the one- (1-D) and two-dimensional (2-D) multifluid systems, whose components are assumed to be immiscible and separated by material interfaces. The proposed LD PCCU schemes are derived within the flux globalization based PCCU framework and they employ the LD central-upwind (LDCU) numerical fluxes. These fluxes have been recently proposed in [{\sc A. Kurganov and R. Xin}, J. Sci. Comput., 96 (2023), Paper No. 56] for the single-fluid compressible Euler equations and we rigorously develop their multifluid extensions. In order to achieve higher resolution near the material interfaces, we track their locations and use an overcompressive SBM limiter in their neighborhoods, while utilizing a dissipative generalized minmod limiter in the rest of the computational domain. We first develop a second-order finite-volume LD PCCU scheme and then extend it to the fifth order of accuracy via the finite-difference alternative weighted essentially non-oscillatory (A-WENO) framework. We apply the developed schemes to a number of 1-D and 2-D numerical examples to demonstrate the performance of the new schemes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员