The process of software defect prediction (SDP) involves predicting which software system modules or components pose the highest risk of being defective. The projections and discernments derived from SDP can then assist the software development team in effectively allocating its finite resources toward potentially susceptible defective modules. Because of this, SDP models need to be improved and refined continuously. Hence, this research proposes the deployment of a cascade generalization (CG) function to enhance the predictive performances of machine learning (ML)-based SDP models. The CG function extends the initial sample space by introducing new samples into the neighbourhood of the distribution function generated by the base classification algorithm, subsequently mitigating its bias. Experiments were conducted to investigate the effectiveness of CG-based Na\"ive Bayes (NB), Decision Tree (DT), and k-Nearest Neighbor (kNN) models on NASA software defect datasets. Based on the experimental results, the CG-based models (CG-NB, CG-DT, CG-kNN) were superior in prediction performance when compared with the baseline NB, DT, and kNN models respectively. Accordingly, the average accuracy value of CG-NB, CG-DT, and CG-kNN models increased by +11.06%, +3.91%, and +5.14%, respectively, over baseline NB, DT, and kNN models. A similar performance was observed for the area under the curve (AUC) value with CG-NB, CG-DT, and CG-kNN recording an average AUC value of +7.98%, +26%, and +24.9% improvement over the baseline NB, DT, and kNN respectively. In addition, the suggested CG-based models outperformed the Bagging and Boosting ensemble variants of the NB, DT, and kNN models as well as existing computationally diverse SDP models.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员