The democratization of AI is currently hindered by the immense computational costs required to train Large Language Models (LLMs) for low-resource languages. This paper presents Persian-Phi, a 3.8B parameter model that challenges the assumption that robust multilingual capabilities require massive model sizes or multilingual baselines. We demonstrate how Microsoft Phi-3 Mini -- originally a monolingual English model -- can be effectively adapted to Persian through a novel, resource-efficient curriculum learning pipeline. Our approach employs a unique "warm-up" stage using bilingual narratives (Tiny Stories) to align embeddings prior to heavy training, followed by continual pretraining and instruction tuning via Parameter-Efficient Fine-Tuning (PEFT). Despite its compact size, Persian-Phi achieves competitive results on Open Persian LLM Leaderboard in HuggingFace. Our findings provide a validated, scalable framework for extending the reach of state-of-the-art LLMs to underrepresented languages with minimal hardware resources. The Persian-Phi model is publicly available at https://huggingface.co/amirakhlaghiqqq/PersianPhi.


翻译:当前,为低资源语言训练大语言模型(LLMs)所需的巨大计算成本阻碍了人工智能的民主化进程。本文提出了Persian-Phi,一个拥有38亿参数的模型,它挑战了“强大的多语言能力需要庞大模型规模或多语言基线”的假设。我们展示了如何通过一种新颖且资源高效的课程学习流程,将原本为单语(英语)模型的Microsoft Phi-3 Mini有效地适应波斯语。我们的方法采用了一个独特的“预热”阶段,使用双语叙事数据(Tiny Stories)在密集训练前对齐嵌入表示,随后通过参数高效微调(PEFT)进行持续预训练和指令调优。尽管模型尺寸紧凑,Persian-Phi在HuggingFace的Open Persian LLM Leaderboard上取得了具有竞争力的结果。我们的研究为将最先进的大语言模型以最低硬件资源扩展到代表性不足的语言,提供了一个经过验证且可扩展的框架。Persian-Phi模型已在https://huggingface.co/amirakhlaghiqqq/PersianPhi 公开提供。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员