Decoding strategies significantly influence the quality and diversity of the generated text in Large Language Models (LLMs), yet their impact on computational resources, particularly GPU energy consumption, is insufficiently studied. This paper investigates the relationship between text generation decoding techniques and energy efficiency, focusing on the trade-off between generation quality and GPU energy usage across diverse tasks and decoding configurations. By benchmarking multiple strategies across various tasks, including Translation, Math Problem Solving, Coding, and Open-ended text generation, we reveal how selecting appropriate decoding techniques with their tuned hyperparameters affects text quality and has measurable implications for energy consumption. Our findings show that the choice of decoding strategy can greatly impact GPU energy usage, even when it has a minimal effect on output quality. Different strategies also involve trade-offs between quality and energy efficiency, and no single decoding method is best in all cases across every metric. To the best of our knowledge, this is one of the first studies to examine decoding strategies in LLMs from the perspective of energy consumption, providing useful insights for building energy-efficient applications without compromising text generation quality.
翻译:暂无翻译