Efficient online decision-making in contextual bandits is challenging, as methods without informative priors often suffer from computational or statistical inefficiencies. In this work, we leverage pre-trained diffusion models as expressive priors to capture complex action dependencies and develop a practical algorithm that efficiently approximates posteriors under such priors, enabling both fast updates and sampling. Empirical results demonstrate the effectiveness and versatility of our approach across diverse contextual bandit settings.
翻译:暂无翻译