Most existing image-text matching methods adopt triplet loss as the optimization objective, and choosing a proper negative sample for the triplet of <anchor, positive, negative> is important for effectively training the model, e.g., hard negatives make the model learn efficiently and effectively. However, we observe that existing methods mainly employ the most similar samples as hard negatives, which may not be true negatives. In other words, the samples with high similarity but not paired with the anchor may reserve positive semantic associations, and we call them false negatives. Repelling these false negatives in triplet loss would mislead the semantic representation learning and result in inferior retrieval performance. In this paper, we propose a novel False Negative Elimination (FNE) strategy to select negatives via sampling, which could alleviate the problem introduced by false negatives. Specifically, we first construct the distributions of positive and negative samples separately via their similarities with the anchor, based on the features extracted from image and text encoders. Then we calculate the false negative probability of a given sample based on its similarity with the anchor and the above distributions via the Bayes' rule, which is employed as the sampling weight during negative sampling process. Since there may not exist any false negative in a small batch size, we design a memory module with momentum to retain a large negative buffer and implement our negative sampling strategy spanning over the buffer. In addition, to make the model focus on hard negatives, we reassign the sampling weights for the simple negatives with a cut-down strategy. The extensive experiments are conducted on Flickr30K and MS-COCO, and the results demonstrate the superiority of our proposed false negative elimination strategy. The code is available at https://github.com/LuminosityX/FNE.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员