Recently, many Deep Learning fuzzers have been proposed for testing of DL libraries. However, they either perform unguided input generation (e.g., not considering the relationship between API arguments when generating inputs) or only support a limited set of corner case test inputs. Furthermore, a substantial number of developer APIs crucial for library development remain untested, as they are typically not well-documented and lack clear usage guidelines. To fill this gap, we propose a novel fuzzer named Orion, which combines guided test input generation and corner case test input generation based on a set of fuzzing rules constructed from historical data that is known to trigger vulnerabilities in the implementation of DL APIs. To extract the fuzzing rules, we first conduct an empirical study regarding the root cause analysis of 376 vulnerabilities in two of the most popular DL libraries, i.e., PyTorch and TensorFlow. We then construct the rules based on the root causes of the historical vulnerabilities. Our evaluation shows that Orion reports 135 vulnerabilities on the latest releases of TensorFlow and PyTorch, 76 of which were confirmed by the library developers. Among the 76 confirmed vulnerabilities, 69 are previously unknown, and 7 have already been fixed. The rest are awaiting further confirmation. Regarding end-user APIs, Orion was able to detect 31.8% and 90% more vulnerabilities on TensorFlow and PyTorch, respectively, compared to the state-of-the-art conventional fuzzer, i.e., DeepRel. When compared to the state-of-the-art LLM-based DL fuzzer, AtlasFuzz, Orion detected 13.63% more vulnerabilities on TensorFlow and 18.42% more vulnerabilities on PyTorch. Regarding developer APIs, Orion stands out by detecting 117% more vulnerabilities on TensorFlow and 100% more vulnerabilities on PyTorch compared to the most relevant fuzzer designed for developer APIs, such as FreeFuzz.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
14+阅读 · 2018年4月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员