Deep Learning (DL) frameworks play a critical role in advancing artificial intelligence, and their rapid growth underscores the need for a comprehensive understanding of software quality and maintainability. DL frameworks, like other systems, are prone to code clones. Code clones refer to identical or highly similar source code fragments within the same project or even across different projects. Code cloning can have positive and negative implications for software development, influencing maintenance, readability, and bug propagation. In this paper, we aim to address the knowledge gap concerning the evolutionary dimension of code clones in DL frameworks and the extent of code reuse across these frameworks. We empirically analyze code clones in nine popular DL frameworks, i.e., TensorFlow, Paddle, PyTorch, Aesara, Ray, MXNet, Keras, Jax and BentoML, to investigate (1) the characteristics of the long-term code cloning evolution over releases in each framework, (2) the short-term, i.e., within-release, code cloning patterns and their influence on the long-term trends, and (3) the file-level code clones within the DL frameworks. Our findings reveal that DL frameworks adopt four distinct cloning trends and that these trends present some common and distinct characteristics. For instance, bug-fixing activities persistently happen in clones irrespective of the clone evolutionary trend but occur more in the "Serpentine" trend. Moreover, the within release level investigation demonstrates that short-term code cloning practices impact long-term cloning trends. The cross-framework code clone investigation reveals the presence of functional and architectural adaptation file-level cross-framework code clones across the nine studied frameworks. We provide insights that foster robust clone practices and collaborative maintenance in the development of DL frameworks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
34+阅读 · 2022年12月20日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
34+阅读 · 2022年12月20日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
45+阅读 · 2019年12月20日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员