Reversible data hiding continues to attract significant attention in recent years. In particular, an increasing number of authors focus on the higher significant bit (HSB) plane of an image which can yield more redundant space. On the other hand, the lower significant bit planes are often ignored for embedding in existing schemes due to their harm to the embedding rate. This paper proposes an efficient reversible data hiding scheme via a double-peak two-layer embedding (DTLE) strategy with prediction error expansion. The higher six-bit planes of the image are assigned as the HSB plane, and double prediction error peaks are applied in either embedding layer. This makes fuller use of the redundancy space of images compared with the one error peak strategy. Moreover, we carry out the median-edge detector pre-processing for complex images to reduce the size of the auxiliary information. A series of experimental results show that our DTLE approach achieves up to 83% higher embedding rate on real-world datasets while guaranteeing better image quality.


翻译:近些年来,反向数据隐藏继续引起人们的极大关注。 特别是,越来越多的作者关注图像的较高比重( HSB), 从而产生更多冗余空间。 另一方面, 较低的比重平面由于对嵌入率的伤害而往往被忽略, 因为它们嵌入到现有计划中。 本文建议通过双层双层嵌入( DTLE)战略, 扩大预测错误的预测, 高效的反向数据隐藏方案。 图像的六位高平面被指定为 HSB 平面, 并在嵌入层中应用双倍预测错误峰值。 这使得图像的冗余空间得到更充分的利用, 与一个错误峰值战略相比。 此外, 我们对复杂图像的中端探测器进行预处理, 以缩小辅助信息的规模。 一系列实验结果显示, 我们的DLE 方法在真实世界数据集中达到了高达83%的高嵌入率, 同时确保更好的图像质量 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员