In-hand tool manipulation is an operation that not only manipulates a tool within the hand (i.e., in-hand manipulation) but also achieves a grasp suitable for a task after the manipulation. This study aims to achieve an in-hand tool manipulation skill through deep reinforcement learning. The difficulty of learning the skill arises because this manipulation requires (A) exploring long-term contact-state changes to achieve the desired grasp and (B) highly-varied motions depending on the contact-state transition. (A) leads to a sparsity of a reward on a successful grasp, and (B) requires an RL agent to explore widely within the state-action space to learn highly-varied actions, leading to sample inefficiency. To address these issues, this study proposes Action Primitives based on Contact-state Transition (APriCoT). APriCoT decomposes the manipulation into short-term action primitives by describing the operation as a contact-state transition based on three action representations (detach, crossover, attach). In each action primitive, fingers are required to perform short-term and similar actions. By training a policy for each primitive, we can mitigate the issues from (A) and (B). This study focuses on a fundamental operation as an example of in-hand tool manipulation: rotating an elongated object grasped with a precision grasp by half a turn to achieve the initial grasp. Experimental results demonstrated that ours succeeded in both the rotation and the achievement of the desired grasp, unlike existing studies. Additionally, it was found that the policy was robust to changes in object shape.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员