Statistical depth is the act of gauging how representative a point is compared to a reference probability measure. The depth allows introducing rankings and orderings to data living in multivariate, or function spaces. Though widely applied and with much experimental success, little theoretical progress has been made in analysing functional depths. This article highlights how the common $h$-depth and related statistical depths for functional data can be viewed as a kernel mean embedding, a technique used widely in statistical machine learning. This connection facilitates answers to open questions regarding statistical properties of functional depths, as well as it provides a link between the depth and empirical characteristic function based procedures for functional data.


翻译:统计深度是衡量一个点的代表性与参考概率度的比较。深度允许对多变量或功能空间中的数据进行排序和排序。虽然应用广泛,实验性也非常成功,但在分析功能深度方面没有取得多少理论进展。本条着重说明了如何将功能数据的共同的美元深度和相关统计深度视为内核中嵌,这是统计机学习中广泛使用的一种技术。这种连接有助于回答关于功能深度统计特性的公开问题,并提供了功能数据深度和经验特征功能程序之间的联系。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
6+阅读 · 2019年12月30日
VIP会员
相关资讯
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员