In this paper, we study distributionally robust offline reinforcement learning (robust offline RL), which seeks to find an optimal policy purely from an offline dataset that can perform well in perturbed environments. In specific, we propose a generic algorithm framework called Doubly Pessimistic Model-based Policy Optimization ($P^2MPO$), which features a novel combination of a flexible model estimation subroutine and a doubly pessimistic policy optimization step. Notably, the double pessimism principle is crucial to overcome the distributional shifts incurred by (i) the mismatch between the behavior policy and the target policies; and (ii) the perturbation of the nominal model. Under certain accuracy conditions on the model estimation subroutine, we prove that $P^2MPO$ is sample-efficient with robust partial coverage data, which only requires the offline data to have good coverage of the distributions induced by the optimal robust policy and the perturbed models around the nominal model. By tailoring specific model estimation subroutines for concrete examples of RMDPs, including tabular RMDPs, factored RMDPs, kernel and neural RMDPs, we prove that $P^2MPO$ enjoys a $\tilde{\mathcal{O}}(n^{-1/2})$ convergence rate, where $n$ is the dataset size. We highlight that all these examples, except tabular RMDPs, are first identified and proven tractable by this work. Furthermore, we continue our study of robust offline RL in the robust Markov games (RMGs). By extending the double pessimism principle identified for single-agent RMDPs, we propose another algorithm framework that can efficiently find the robust Nash equilibria among players using only robust unilateral (partial) coverage data. To our best knowledge, this work proposes the first general learning principle -- double pessimism -- for robust offline RL and shows that it is provably efficient with general function approximation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员