Channels with synchronization errors, exhibiting deletion and insertion errors, find practical applications in DNA storage, data reconstruction, and various other domains. Presence of insertions and deletions render the channel with memory, complicating capacity analysis. For instance, despite the formulation of an independent and identically distributed (i.i.d.) deletion channel more than fifty years ago, and proof that the channel is information stable, hence its Shannon capacity exists, calculation of the capacity remained elusive. However, a relatively recent result establishes the capacity of the deletion channel in the asymptotic regime of small deletion probabilities by computing the dominant terms of the capacity expansion. This paper extends that result to binary insertion channels, determining the dominant terms of the channel capacity for small insertion probabilities and establishing capacity in this asymptotic regime. Specifically, we consider two i.i.d. insertion channel models: insertion channel with possible random bit insertions after every transmitted bit and the Gallager insertion model, for which a bit is replaced by two random bits with a certain probability. To prove our results, we build on methods used for the deletion channel, employing Bernoulli(1/2) inputs for achievability and coupling this with a converse using stationary and ergodic processes as inputs, and show that the channel capacity differs only in the higher order terms from the achievable rates with i.i.d. inputs. The results, for instance, show that the capacity of the random insertion channel is higher than that of the Gallager insertion channel, and quantifies the difference in the asymptotic regime.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2019年1月24日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员