The generic text preprocessing pipeline, comprising Tokenisation, Normalisation, Stop Words Removal, and Stemming/Lemmatisation, has been implemented in many ontology matching (OM) systems. However, the lack of standardisation in text preprocessing creates diversity in mapping results. In this paper, we investigate the effect of the text preprocessing pipeline on OM tasks at syntactic levels. Our experiments on 8 Ontology Alignment Evaluation Initiative (OAEI) track repositories with 49 distinct alignments indicate: (1) Tokenisation and Normalisation are currently more effective than Stop Words Removal and Stemming/Lemmatisation; and (2) The selection of Lemmatisation and Stemming is task-specific. We recommend standalone Lemmatisation or Stemming with post-hoc corrections. We find that (3) Porter Stemmer and Snowball Stemmer perform better than Lancaster Stemmer; and that (4) Part-of-Speech (POS) Tagging does not help Lemmatisation. To repair less effective Stop Words Removal and Stemming/Lemmatisation used in OM tasks, we propose a novel context-based pipeline repair approach that significantly improves matching correctness and overall matching performance. We also discuss the use of text preprocessing pipeline in the new era of large language models (LLMs).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年12月17日
Arxiv
1+阅读 · 2024年12月13日
Arxiv
12+阅读 · 2021年3月24日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
1+阅读 · 2024年12月17日
Arxiv
1+阅读 · 2024年12月13日
Arxiv
12+阅读 · 2021年3月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员