Processing-in-memory (PIM) has emerged as the go to solution for addressing the von Neumann bottleneck in edge AI accelerators. However, state-of-the-art (SoTA) digital PIM approaches suffer from low compute density, primarily due to the use of bulky bit cells and transistor-heavy adder trees, which impose limitations on macro scalability and energy efficiency. This work introduces Res-DPU, a resource-shared digital PIM unit, with a dual-port 5T SRAM latch and shared 2T AND compute logic. This reflects the per-bit multiplication cost to just 5.25T and reduced the transistor count of the PIM array by up to 56% over the SoTA works. Furthermore, a Transistor-Reduced 2D Interspersed Adder Tree (TRAIT) with FA-7T and PG-FA-26T helps reduce the power consumption of the adder tree by up to 21.35% and leads to improved energy efficiency by 59% compared to conventional 28T RCA designs. We propose a Cycle-controlled Iterative Approximate-Accurate Multiplication (CIA2M) approach, enabling run-time accuracy-latency trade-offs without requiring error-correction circuitry. The 16 KB REP-DPIM macro achieves 0.43 TOPS throughput and 87.22 TOPS/W energy efficiency in TSMC 65nm CMOS, with 96.85% QoR for ResNet-18 or VGG-16 on CIFAR-10, including 30% pruning. The proposed results establish a Res-DPU module for highly scalable and energy-efficient real-time edge AI accelerators.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员