Judgment aggregation is a framework to aggregate individual opinions on multiple, logically connected issues into a collective outcome. It is open to manipulative attacks such as \textsc{Manipulation} where judges cast their judgments strategically. Previous works have shown that most computational problems corresponding to these manipulative attacks are \NP-hard. This desired computational barrier, however, often relies on formulas that are either of unbounded size or of complex structure. We revisit the computational complexity for various \textsc{Manipulation} and \textsc{Bribery} problems in judgment aggregation, now focusing on simple and realistic formulas. We restrict all formulas to be clauses that are (positive) monotone, Horn-clauses, or have bounded length. For basic variants of \textsc{Manipulation}, we show that these restrictions make several variants, which were in general known to be \NP-hard, polynomial-time solvable. Moreover, we provide a P vs.\ NP dichotomy for a large class of clause restrictions (generalizing monotone and Horn clauses) by showing a close relationship between variants of \textsc{Manipulation} and variants of \textsc{Satisfiability}. For Hamming distance based \textsc{Manipulation}, we show that \NP-hardness even holds for positive monotone clauses of length three, but the problem becomes polynomial-time solvable for positive monotone clauses of length two. For \textsc{Bribery}, we show that \NP-hardness even holds for positive monotone clauses of length two, but it becomes polynomial-time solvable for the same clause set if there is a constant budget.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员