In this paper, we study the sixth order equation with the simply supported boundary conditions in a polygonal domain. We propose a new mixed formulation that decomposes the sixth order problem into a system of Poisson equations. Depending on the interior angles of the domain, additional Poisson problems may be needed to confine the solution to the correct Sobolev space. In addition, we propose a $C^0$ finite element algorithm for the sixth order problem and provide the optimal error analysis. Numerical results are reported to verify the theoretical findings.


翻译:本文研究了一个多边形域内带简支边界条件的六阶方程。我们提出了一个新的混合形式,将六阶问题分解为一组泊松方程。根据域的内角,可能需要额外的泊松问题来将解限制在正确的 Sobolev 空间中。此外,我们提出了一种 $C^0$ 有限元算法用于求解六阶问题,并提供了最优误差分析。我们还报告了数值结果以验证理论发现。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
88+阅读 · 2021年12月9日
专知会员服务
51+阅读 · 2020年12月14日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员